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We present a search for pair production of doubly-charged Higgs bosons in the processes qq̄ →
H++H−− decaying through H±± → τ±τ±, µ±τ±, µ±µ±. The search is performed in pp collisions
at a center-of-mass energy of

√
s = 1.96 TeV using an integrated luminosity of 7.0 fb−1 collected by

the D0 experiment at the Fermilab Tevatron Collider. The results are used to set 95% C.L. limits
on the pair production cross section of doubly-charged Higgs bosons and on their mass for different
H±± branching fractions. Models predicting different H±± decays are investigated. Assuming
B(H±± → τ±τ±) = 1 yields an observed (expected) lower limit on the mass of a left-handed H±±L
boson of 128 (116) GeV and assuming B(H±± → µ±τ±) = 1 the corresponding limits are 144
(149) GeV. In a model with B(H±± → τ±τ±) = B(H±± → µ±τ±) = B(H±± → µ±µ±) = 1/3, we
obtain M(H±±L ) > 130 (138) GeV.

PACS numbers: 14.80.Fd,13.85.Rm

Doubly-charged Higgs bosons (H±±) appear in models
with an extended Higgs sector such as the Little Higgs
model [1], Left-Right symmetric models [2], and in mod-
els with SU(3)c×SU(3)L×U(1)Y (3-3-1) gauge symme-
try [3].

The H±± bosons could be pair-produced and observed

∗with visitors from aAugustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, cSLAC, Menlo Park,
CA, USA, dUniversity College London, London, UK, eCentro
de Investigacion en Computacion - IPN, Mexico City, Mexico,
fECFM, Universidad Autonoma de Sinaloa, Culiacán, Mexico, and
gUniversität Bern, Bern, Switzerland. ‡Deceased.

at a hadron collider through the process qq̄ → Z/γ∗ →
H++H−− → `±`′± (`, `′ = e, µ, τ). The decay into like-
charge lepton pairs violates lepton flavor number con-
servation. The decays H±± → τ±τ± are predicted to
dominate in some scenarios, such as the 3-3-1 model of
Ref. [4]. In a Higgs triplet model that is based on a
seesaw neutrino mass mechanism, a normal hierarchy of
neutrino masses leads to approximately equal branching
fractions for H±± boson decays to ττ , µτ , and µµ, if the
mass of the lightest neutrino is less than 10 meV [5]. In
this Letter, we present the first comparison of data with
this model and the first search for H±± → τ±τ± decays
at a hadron collider.
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In Left-Right symmetric models, right-handed states
(H±±R ) appear in addition to left-handed states (H±±L ).
They are characterized through their coupling to right-
handed and left-handed fermions, respectively. The cross
section for production of right-handed H++

R H−−R pairs is
about a factor of two smaller than for H++

L H−−L because
of the different coupling to the Z boson. The mass limits
for H±±R bosons therefore tend to be weaker than for
H±±L bosons.

Searches for pair production of H±± bosons have
been performed previously at the CERN e+e− Collider
(LEP) [6] and at the DESY ep Collider (HERA) [7].
Limits on the mass of the H±± boson were obtained
in the range of 95 GeV to 100 GeV, depending on
the flavor of the final state leptons. The OPAL and
H1 Collaborations searched for single H±± production
in the processes e+e− → e∓e∓H±± [8] and e±p →
`∓H±±p [7], and through the study of Bhabha scatter-
ing e+e− → e+e− [8], constraining the H±± boson’s
Yukawa couplings he` to electrons. At the Fermilab
Tevatron Collider, the D0 Collaboration has searched
for the four muon final state and set a mass limit of
M(H±±L ) > 150 GeV [9, 10]. The CDF Collabora-
tion published limits for ee final states of M(H±±L ) >
133 GeV, for µµ of M(H±±L ) > 136 GeV, and for eµ of
M(H±±L ) > 115 GeV [11]. CDF also obtained limits for
H±±L decays into eτ and µτ of M(H±±L ) > 114 GeV and
M(H±±L ) > 112 GeV, respectively [12]. All these mass
limits assume 100% decays into the specified final state.

The results in this Letter are based on data collected
with the D0 detector at the Fermilab Tevatron Collider
and correspond to an integrated luminosity of 7.0 fb−1.
The D0 detector [13] comprises tracking detectors and
calorimeters. Silicon microstrip detectors and a scintillat-
ing fiber tracker are used to reconstruct charged particle
tracks within a 2 T solenoid. The uranium/liquid-argon
calorimeters used to measure particle energies consist of
electromagnetic (EM) and hadronic sections. Muons are
identified by combining tracks in the central tracker with
patterns of hits in the muon spectrometer. Events are
required to pass triggers that select at least one muon
candidate.

All background processes are simulated using Monte
Carlo (MC) event generators, except the multijet back-
ground, which is determined from data. The W+jet,
Z/γ∗ → `+`−, and tt̄ processes are generated using
alpgen [14] with showering and hadronization provided
by pythia [15]. Diboson production (WW, WZ, and ZZ)
and signal events are simulated using pythia. The signal
samples for the model with equal branching ratios for the
decays H±± → τ±τ±, µ±µ±, and µ±τ± are generated
using Yukawa couplings hµτ = hτµ =

√
2hττ =

√
2hµµ.

The tau lepton decays are simulated with tauola [16].
All MC samples are processed through a geant [17] sim-
ulation of the detector. Data from random beam cross-
ings are overlaid on MC events to account for detec-

tor noise and additional pp interactions. The simulated
events are corrected for the dependence of the trigger
efficiency in data on the instantaneous luminosity and
for differences between data and simulation in the recon-
struction efficiencies and in the distribution of the lon-
gitudinal coordinate of the interaction point along the
beam direction. Next-to-leading order (NLO) quantum
chromodynamics calculations of cross sections are used to
normalize the tt̄ and diboson samples, and next-to-NLO
calculations are used for all other processes.

Two types of tau lepton decays into hadrons (τh) are
identified by their signatures: type-1 tau candidates con-
sist of a calorimeter cluster, with one associated track
and no sub-cluster in the EM section of the calorimeter.
This signature corresponds mainly to τ± → π±ν decays.
For type-2 tau candidates, an energy deposit in the EM
calorimeter is required in addition to the type-1 signa-
ture, as expected for τ± → π±π0ν decays. The outputs
of neural networks, one for each tau-type, designed to
discriminate τh from jets, have to be NNτ > 0.75 [18].
Their input variables are based on isolation variables for
objects and on the spatial distribution of showers. The
tau lepton energy is measured with the calorimeter.

We select events with at least one muon and at least
two τh candidates. The muons must be isolated, both
in the tracking detectors and in the calorimeters. Each
event must have a reconstructed pp interaction vertex
with a longitudinal component located within 60 cm of
the nominal center of the detector. The longitudinal
coordinate zdca of the distance of closest approach for
each track is measured with respect to the nominal cen-
ter of the detector. The differences between zdca of the
highest-pT muon and the two highest-pT τh (labeled τ1
and τ2), must be less than 2 cm. The pseudorapidity [19]
of the selected muons, τ1, and τ2 must be |ηµ| < 1.6
and |ητ1,2 | < 1.5, respectively, and for additional τh can-
didates we require |ητ | < 2. The transverse momenta
must be pµT > 15 GeV and p

τ1,2
T > 12.5 GeV. All se-

lected τh candidates and muons are required to be sep-
arated by ∆Rµτ > 0.5, where ∆R =

√
(∆φ)2 + (∆η)2

and φ is the azimuthal angle, and the two leading τh
must be separated by ∆Rτ1τ2 > 0.7. The sum of the
charges of the highest-pT muon, τ1, and τ2 is required to
be Q =

∑
i=µ,τ1,τ2

qi = ±1 as expected for signal. After
all selections, the main background is from diboson pro-
duction and Z → τ+τ−, where an additional jet mimics
a lepton.

We estimate the multijet background using three in-
dependent data samples and identical selections, except
with the NNτ requirements reversed, by requiring that
either one or both τh candidates have NNτ < 0.75. The
simulated background is subtracted before the samples
are used to determine the differential distributions and
normalization of the multijet background in the signal
region. A second method used to estimate the multijet
background is based on the fact that events with Q = ±1
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FIG. 1: (color online). M(τ1, τ2) distribution for the (a) qτ1 = qτ2 and (b) qτ2 = −qτ2 samples, and (c) transverse momentum
of the doubly-charged dilepton system, pHT , for all four samples combined, after all selections. The data are compared to the
sum of the expected background and to simulations of a H±±L H±±L signal for M(H±±) = 120 GeV and B(H±±L → τ±τ±) = 1,
B(H±±L → µ±τ±) = 1, and B(H±±L → τ±τ±) = B(H±±L → µ±µ±) = B(H±±L → µ±τ±) = 1/3, normalized using the NLO
calculation of the cross section. “Other” background comprises W+jet, Z/γ∗ → e+e−, and tt̄ processes. All entries exceeding
the range of the histogram are added to the last bin.

TABLE I: Numbers of events in data, predicted background,
and expected signal for M(H±±L ) = 120 GeV, assuming the
NLO calculation of the signal cross section for B(H±±L →
τ±τ±) = 1, B(H±±L → µ±τ±) = 1, and B(H±±L → τ±τ±) =
B(H±±L → µ±µ±) = B(H±±L → µ±τ±) = 1/3. The numbers
are shown for the four samples separately, together with their
total uncertainties.

All Nµ = 1 Nµ = 1 Nµ = 2
Nτ = 2 Nτ = 3 Nτ = 2

qτ1 = qτ2 qτ1 = −qτ2
Signal
τ±τ± 6.6± 0.9 1.4± 0.2 3.1± 0.4 1.6± 0.2 0.4± 0.1
µ±τ± 13.9± 1.9 0.3± 0.1 6.8± 0.9 0.4± 0.1 6.3± 0.9

Equal B 9.5± 1.3 2.5± 0.3 3.1± 1.0 1.2± 0.2 2.6± 0.4
Background
Z → τ+τ− 8.2± 1.1 3.4± 0.5 4.8± 0.7 < 0.1 < 0.1
Z → µ+µ− 5.1± 0.7 2.2± 0.3 2.5± 0.4 0.1± 0.1 0.2± 0.1
Z → e+e− 0.3± 0.1 < 0.1 0.3± 0.1 < 0.1 < 0.1
W + jets 2.9± 0.4 1.1± 0.2 1.8± 0.3 < 0.1 < 0.1

tt̄ 0.6± 0.1 0.3± 0.1 0.3± 0.1 0.1± 0.1 < 0.1
Diboson 10.5± 1.7 0.5± 0.1 8.5± 1.4 0.4± 0.1 1.1± 0.2
Multijet < 0.8 < 0.2 < 0.5 < 0.1 < 0.1

Background
Sum 27.6± 4.9 7.5± 1.2 18.2± 3.3 0.6± 0.1 1.3± 0.2
Data 22 5 15 0 2

are signal-like, whereas events with Q = ±3 correspond
largely to multijet background. To reduce the W+jets
contribution in the sample with Q = ±3, the visible
W boson mass MW =

√
2pµp/T (1− cosφ) is required

to be < 50 GeV, where pµ is the muon momentum, p/T
the imbalance in transverse momentum measured in the
calorimeter, and φ is the azimuthal angle between the
muon and the direction of the p/T . The total rate of ex-
pected multijet background events following all selections

is negligible (< 3% of the total background).

To improve the discrimination of signal from back-
ground, the selected data are subdivided into four non-
overlapping samples, depending on the charges of the
muon (qµ) and the τh candidates (qτ ), and the num-
ber of muons (Nµ) and τh candidates (Nτ ) in the event.
First, we define two samples for events with Nµ = 1 and
Nτ = 2. Because the two like-charge leptons are as-
sumed to originate from a single H±± decay, we consider
separately events where both tau leptons have the same
charge, qτ1 = qτ2 , and events with τ1 and τ2 of oppo-
site charge, i.e., qτ1 = −qτ2 , which implies that one of
the τ leptons and the muon have the same charge. The
third sample is defined by Nτ = 3 and the fourth sample
by Nµ = 2, without any additional requirements on the
charges.

The distributions of the invariant mass of the two lead-
ing tau candidates, M(τ1, τ2), for the like and opposite-
charge samples are shown in Figs. 1(a) and (b). The
separation in different samples increases the sensitivity
to signal, as the composition of the background is dif-
ferent, with the like-charge sample being dominated by
background from Z/γ∗ decays and the opposite-charge
sample by background from diboson production. The di-
boson background is mainly due to WZ→ µνe+e− events
where the electrons where misidentified as tau leptons.
In Fig. 1(c) we show the transverse momentum of the
doubly-charged dilepton system, pHT , which corresponds
to the reconstructed H±± boson, assuming the two lep-
tons of same charge originate from H±± boson decay.
The expected number of background and signal events
for the four samples and the observed numbers of events
in data are shown in Table I. The M(τ1, τ2) distribu-
tion is used to discriminate signal from background in
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FIG. 2: (color online). Upper limit on the H±±L H±±L pair
production cross section for (a) B(H±±L → τ±τ±) = 1,
(b) B(H±±L → µ±τ±) = 1, and (c) B(H±±L → τ±τ±) =
B(H±±L → µ±µ±) = B(H±±L → µ±τ±) = 1/3. The bands
around the median expected limits correspond to regions of
±1 and ±2 standard deviation (s.d.), and the band around
the predicted NLO cross section for signal corresponds to a
theoretical uncertainty of ±10%.

the like and opposite-charge samples and the number of
events for the Nµ = 1, Nτ = 3 and Nµ = Nτ = 2 samples.

Since the data are well described by the background
expectation, we determine limits on the H++H−− pro-
duction cross section using a modified frequentist ap-
proach [20]. A log-likelihood ratio (LLR) test statistic
is formed using the Poisson probabilities for estimated
background yields, the signal acceptance, and the ob-

TABLE II: Expected and observed limits on M(H±±) (in
GeV) for left and right-handed H±± bosons. Only left-
handed states are considered for the model that assumes
equality of branching fractions into ττ , µτ , and µµ final
states. We only derive limits if the expected limit on M(H±±)
is ≥ 90 GeV.

Decay H±±L H±±R
expected observed expected observed

B(H±± → τ±τ±) = 1 116 128
B(H±± → µ±τ±) = 1 149 144 119 113

Equal B into
τ±τ±, µ±µ±, τ±µ± 130 138
B(H±± → µ±µ±) = 1 180 168 154 145

served number of events for different H±± mass hypothe-
ses. The confidence levels are derived by integrating
the LLR distribution in pseudo-experiments using both
the signal-plus-background (CLs+b) and the background-
only hypotheses (CLb). The excluded production cross
section is taken to be the cross section for which the con-
fidence level for signal, CLs =CLs+b/CLb, equals 0.05.

Systematic uncertainties on both background and sig-
nal, including their correlations, are taken into account.
The theoretical uncertainty on background cross sections
for Z/γ∗ → `+`−, W+jets, tt̄, and diboson production
vary between 6% − 10%. The uncertainty on the mea-
sured integrated luminosity is 6.1% [21]. The systematic
uncertainty on muon identification is 2.9% per muon and
the uncertainty on the identification of τh, including the
uncertainty from applying a neural network to discrimi-
nate τh from jets, is 4% for each type-1 and 7% for each
type-2 τh candidate. The trigger efficiency has a system-
atic uncertainty of 5%. The uncertainty on the signal
acceptance from parton distribution functions is 4%.

In Fig. 2, the upper limits on the cross sections are
compared to the NLO signal cross sections for H±±L H±±L
pair production [22] for some of the branching ratios con-
sidered. The corresponding expected and observed limits
are shown in Table II.

The H±± boson mass limits assuming B(H±± →
τ±τ±) + B(H±± → µ±µ±) = 1 are determined by com-
bining signal samples generated with pure 4τ , (2τ/2µ),
and 4µ final states with fractions B2, 2B(1 − B), and
(1 − B)2, respectively, where B ≡ B(H±± → τ±τ±).
Here, we include in the limit setting the distribution of
the invariant mass of the two highest pT muons, including
the systematic uncertainties and their correlations, from
a search for H++H−− → 4µ decays performed by the
D0 Collaboration in 1.1 fb−1 of integrated luminosity [9].
The results are shown in Fig. 3 for varying B = 0%−100%
in steps of 10%. A consistent treatment of the limit set-
ting slightly increases the mass limits for the 4µ final
state compared to Ref. [9], shown in Table II.
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FIG. 3: (color online). Expected and observed exclusion re-
gion at the 95% C.L. in the plane of B(H±± → τ±τ±) versus
M(H±±), assuming B(H±± → τ±τ±) +B(H±± → µ±µ±) =
1, for (a) left-handed and (b) right handed H±± bosons. The
band around the expected limit represents the uncertainty in
the NLO calculation of the cross section for signal.

In summary, we have performed the first search at
a hadron collider for pair production of doubly-charged
Higgs bosons decaying exclusively into tau leptons. We
set an observed (expected) lower limit of M(H±±L ) >
128 (116) GeV for a 100% branching fraction of H±± →
τ±τ±, M(H±±L ) > 144 (149) GeV for a 100% branching
fraction into µτ , and M(H±±L ) > 130 (138) GeV for a
model with equal branching ratios into ττ , µτ , and µµ.
These are the most stringent limits onH±± boson masses
in these decay channels.
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[15] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy
Phys. 05, 026 (2006); we use version 6.323.
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